Transcriptional Response of Selenopolypeptide Genes and Selenocysteine Biosynthesis Machinery Genes in Escherichia coli during Selenite Reduction

نویسندگان

  • Antonia Y Tetteh
  • Katherine H Sun
  • Chiu-Yueh Hung
  • Farooqahmed S Kittur
  • Gordon C Ibeanu
  • Daniel Williams
  • Jiahua Xie
چکیده

Bacteria can reduce toxic selenite into less toxic, elemental selenium (Se(0)), but the mechanism on how bacterial cells reduce selenite at molecular level is still not clear. We used Escherichia coli strain K12, a common bacterial strain, as a model to study its growth response to sodium selenite (Na2SeO3) treatment and then used quantitative real-time PCR (qRT-PCR) to quantify transcript levels of three E. coli selenopolypeptide genes and a set of machinery genes for selenocysteine (SeCys) biosynthesis and incorporation into polypeptides, whose involvements in the selenite reduction are largely unknown. We determined that 5 mM Na2SeO3 treatment inhibited growth by ∼ 50% while 0.001 to 0.01 mM treatments stimulated cell growth by ∼ 30%. Under 50% inhibitory or 30% stimulatory Na2SeO3 concentration, selenopolypeptide genes (fdnG, fdoG, and fdhF) whose products require SeCys but not SeCys biosynthesis machinery genes were found to be induced ≥2-fold. In addition, one sulfur (S) metabolic gene iscS and two previously reported selenite-responsive genes sodA and gutS were also induced ≥2-fold under 50% inhibitory concentration. Our findings provide insight about the detoxification of selenite in E. coli via induction of these genes involved in the selenite reduction process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcriptional Response of Structural and Regulatory Genes Involved in Isoprene Biosynthesis and its Relation to Essential Oil Biosynthesis in Response to Salicylic Acid and Abscisic Acid in Mentha piperita L.

Background: In peppermint, precursors for the biosynthesis of monoterpenes are provided by plastidial methyl-erythritol-phosphate (MEP) pathways. Objective: In order to increase our understanding of terpene metabolism in M. piperita, the effect of salicylic acid (SA) and abscisic acid (ABA) in the modulation of expression pattern of genes involved in essential oil biosynthesis and secretion wa...

متن کامل

Detection of TEM, SHV and CTX-M Antibiotic Resistance Genes in Escherichia coli Isolates from Infected Wounds

ABSTRACT        Background and Objective: Escherichia coli is one of the most common causes of hospital-acquired infections. Extended-spectrum β-lactamase (ESBL)-producing E. coli strains are resistant to third-generation cephalosporins. The three main genes involved in ESBL production are TEM, SHV and CTX-M. Detection of ESBL-producing E. coli is of importan...

متن کامل

Detection of eaeA, hlyA, stx1 and stx2 genes in pathogenic Escherichia coli isolated from broilers affected with colibacillosis

Background: Foodborne outbreaks associated with shiga toxin-producing Escherichia coli (STEC) have been well documented worldwide. STECs are major causative agents of gastroenteritis in humans that may be complicated by hemorrhagic colitis (HC), hemolytic uremic syndrome (HUS), and thrombotic thrombocytopenia purpura (TTP). OBJECTIVES: The aim of this study was to investigate the presence of vi...

متن کامل

Expression of 4 Genes in Ocimum basilicum and their Relationship with Phenylpropanoids Content

Recent data showed that phenylpropanoid compound, methylchavicol is essential component of Iranian cultivars of basil. Studying their occurrence during development of plant may help to elucidate the role of phenylpropanoids in plant cell physiology. We followed the phenylpropanoids concentration and the expression of genes related to their biosynthesis during growth and development of two culti...

متن کامل

Selective selC-Independent Selenocysteine Incorporation into Formate Dehydrogenases

The formate dehydrogenases (Fdh) Fdh-O, Fdh-N, and Fdh-H, are the only proteins in Escherichia coli that incorporate selenocysteine at a specific position by decoding a UGA codon. However, an excess of selenium can lead to toxicity through misincorporation of selenocysteine into proteins. To determine whether selenocysteine substitutes for cysteine, we grew Escherichia coli in the presence of e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2014  شماره 

صفحات  -

تاریخ انتشار 2014